
PMM U.S.S.R.,Vo1.46,pp.54-57 
Copyright Pergamon Press Ltd.1983.Printed in U.K. 

ON STABILITY OF CONVECTIVE 
OF A BINARY MIXTURE WITH THERMAL 

0021-8928/83/l 0054 $7.50/O 

UDC 532.516:536.25 

FLOW 
DIFFUSION* 

G.Z. GERSHUNI, E.M. ZHUKHOVITSKII and L.E. SOROKIN 

The linear stability of a steady plane parallel convective flow of a binary mixture 

in a plane vertical layer is considered with allowance for the thermal diffusion 
effect. Various instability mechanisms are discussed, and stability boundaries and 
properties of critical perturbations are determined. 

1. 

approximation, 

taking into account thermal diffusion but neglecting the effect of the thermal conductivity 
diffusion effect. Besides conventional notation we shall use the following: h for length, 
h’lv for time, g$,Oh*lv for velocity, 0 for temperature, &@ /& for concentration,and Pg&@h 
for pressure, with fil , fie as the temperature and concentration density coefficients. All 
parameters of the mixture (except density) are assumed independent of temperature and concent- 

ration. The dimensionless equations and boundary conditions for velocity v , temperature T, 
light component concentration C , and pressure p are of the form 

av 
at +G(vV)v=-T'p-' Vvi-(TIC),, Vv=o (1.1) 

_!$ j.GvVT =+AT 

The following dimensionless parameters appear in the problem: the Grashof number G,the 

Prandtl number P, the Schmidt number Pd, and the dimensionless thermal diffusion parameter E 

(a is the thermal diffusion coefficient; for regular and anomalous thermal diffusion a >0 

and a-: 0), respectively). 
Problem (1.1) has a solution that defines a steady plane parallel flowwithacubicveloc- 

ity profile, in the direction along vertical z axis, and linear temperature and concentration 

profiles 

&)=+(I / F) (2-3 - r), To=--.r, CO=-cx (1.2) 

In regular thermal diffusion (a >U); when there is a surplus of the light componentnear 

the heated wall, velocities of the convection counter-flows increase, unlike in the case of 

a homogeneous fluid; when this effect is anomalous (E(O), these velocities decrease, and in 

the case of E = -1 we have mechanical equilibrium. 
To investigate stability of the basic mode (1.2) we consider small normal plane perturba- 

tions proportional to exp(--ht + ikz). For the amplitude perturbations of the stream function 

rp, temperature 8 , and concentration 5 we have the spectral boundary value problem 

- hAcp + ikG (v”Acp - uO"<p) = A2'p + 8' + g' (1.3) 
- hf3 + ikG (vat3 + rp) = P-1 A8 (A = ~2% / ax2 - k2) 

- )@ + ikG (v,E + ecp) = Pd-l (A5 - eAI3) 
x= &I; q = ‘p’ = 0, 8 = 0, y - p,w = 0 
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where primes denote differentation with respect to x. 
The characteristic decrements J. = a, -j-Q., defined by this problem depend on parameters 

G, P, Pd, Eand k. Stability limits are obtained from the condition that h, = 0. 
Problem (1.3) was solved numerically using the method of differential run through /I/, 

varying the Prandtl numbersp and Pd. Neutral curves G(k), whose position depends on the 
remaining parameters of the problem, were obtained. The stability limit is determined by the 
minimal value of G, (P,Pd. F) with respect to k. Characteristics of critical perturbations, i.e. 
the wave number k, and tin the case of wave perturbations) the phase velocity in units of the 
basic flow maximum velocity c = $1 1/s hi,,,/ [(I + a)k,,,&,j were obtained besides the stability 
limit. 

2. Discussion of results. Calculations had shown that in the investigated range of 
parameters meaning, instability is induced by one of the following three mechanisms.The first 
is of hydrodynamic nature and associated with the development of vortices at the boundaries of 
counterflowing convective streams; this instability is of a steady character, with zero phase 
velocity of respective perturbations. The second mechanism is associated with the development 
of increasing wave perturbations in ascending and descending streams. Finally, a branch of 
steady thermal concentration instability induced by long-wave perturbations was revealed in 
the region of anomalous thermal diffusion. 

The combined pattern of flow stability is shown in Fig.1, which represents the dependence 
of the minimal critical Grashof number G,on the dimensionless thermal diffusion parameter a 
for the indicated above critical perturbation types, The pattern relates to P = 6.7, which is 
characteristic for liquid mixtures. 

Curve I corresponds to the stability limit of the hydrodynamic type. When E = 0 and the 
stated boundary conditions are satisfied, the gradient of concentration is absent, and from 
the stability viewpoint the mixture behaves as a homogeneous medium. The critical Grashof 
number G,, then weakly depends on P (when P = 0.7 and 6.7, G,,= 503, and 492, respectively) /2/. 
In conformity with (1.2) variation of Eresults in the amplitude of velocity variation of the 
basic flow according to the law (2 + s),which lowers the stability limit in the region of&>0 
and increases it in that of E< 0 (of anomalous thermal diffusion), reaching absolute stability 
as s-+--1. Within the accuracy of the diagram the stability limit of the hydrodynamic mode 
in the investigated region of parameters is defined by formula Cm= G,,] (i + ~1, in which the 

absence of implicit dependence on p and pdisdue 
to the purely hydrodynamic origin of the respect- 
ive instability mechanism. 

Curves Za-2d define stability limits relat- 
ive to wave perturbations and correspondtopara- 
meter Pd = 30; 100; 200 ,and 676.7. When P = 6.7 
and P*values as indicated, the waves are of the 
concentration nature. It will be seen that in 
the wide interval of s>O the wave mode is the 
more dangerous. As Pa increases the Grashof 
number G, decreases; there is an analogy here 
with dependence G,(P) for the temperature 
wave mode in a homogeneous fluid /2/. 

There is also a range of valuesofparameter 

-1 5 I 
s in which the most dangerous are concentration 

E waves in the case of anomalous thermal diffusion 
(E < 0). The respective stability limits are re- 

Fig.1 
presented by the set of curves 3 (aandb Pd = 30, 
c Pd = 200, and d pd = 676.7). The nonmonoton- 
icity of function G,(Pd) should be noted. More- 
over, when Pd=,30 , there are two intersecting 

modes (curves a and b) generated by different branches of the concentration perturbation spec- 
trum. 

Let us pass to the third instability mechanism indicated above, i.e. of the thermal con- 
centration type. That mechanism acts in the region of considerable thermal diffusion anomaly, 
and is linked with the development of long-wave perturbations when k, =O. Stability boundar- 
ies 4,a, b, c correspond to pd = 30,200, and 676.7. In the case of high P,, characteristic 
of liquid mixtures, the critical Grashof number is low, and a strong destabilization of the 
flow takes place. 

The appearance in the region of irregular thermal diffusion of the thermal concentration 
instability mechanism is natural, In the case of large absolute values of e the temperature 
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and concentration gradients are directed so that partial, or even total (when F = -I) com- 
pensation of respective horizontal density gradients occurs. Boundary conditionsthatspecify 
a zero stream of matter on the channel walls imply the generation in this situation of long- 
wave instability by analogy with the flow of a mixture in a vertical layer with a stabilizing 
longitudinal concentration gradient /3,4/. The long-wave properties of this mode enable us 
to determine analytically the stability limit using the method of small parameter. 

Let us consider the limit case of long-wave perturbations as k-+0. The spectral problem 
(1.3) with k=O has evidently a neutral level that corresponds to a uniform amplitude of con- 
centration perturbation over the cross section 

h = 0, cp = 6 = 0, E = const (2.1) 

where the normalization constant is assumed equal unity. 
We seek a solution whose structure corresponds that level for small k , and represent it 

in the form of expansions 

'P = qlk + f . . . = f3,k 8,kZ + . . 

= 1 $,k -f- 3 . ., h h,k + -/- . . 

(2.2) 

write down systems of and second equations 

(2.4) 

Boundary for all are the as for (1.3). 
The of solvability the inhomogeneous (2.3) yields = 0, the 

solution of the 

The condition solvability of (2.4)-vanishing of integral inthe 
side of 

A,P,=i.+ 2 -t e)(l ae) 

Since the stability AZ = hence the Grashof number 

which shows the product G,Pd dependent only on the thermal diffusion parameter, is the 
critical parameter. Instability exists in the interval -I< e< --‘Is. Function (2.5) is in 

complete agreement with the results of numerical calculations (curves 4 in Fig-l). Moreover, 
calculations show that almost throughout the indicated interval of values of e the minimal 
critical Grashof number is reached when k, = 0. Nevertheless, when E< -0.98, the minimum of 
stability curves G(k) shifts to perturbations with km # 0, which shows that, as in the case of 
lengthwise stratification /4/, the cell type perturbations are the most dangerous. The re- 

spective stability limits are shown in Fig.1 by dash lines. 
The dependence of critical perturbation parameters, i.e. the wave-number k,andthephase 

velocity CT. on &is shown in Figs.2 and 3 , where the numbering of curves is the same as in 
Fig.1. It will be seen that in the region of E> 0 the phase velocity of critical wave pert- 
urbations is close to the maximum velocity of the basic flow, while in that of E< 0 critical 

perturbations "lag behind" the latter. 
Liquid mixtures can substantially differ with respect to the Prandtl number. The effect 

of parameter Pen the wave instability limit are shown in Fig.4 for fixed Pd ~676.7 . Curves 
l-6 correspond there to the following values of the thermal diffusion parameter: E = 0; 0.1; 

'0.3; -0.1; -0.3; --0.5. This inducates that the thermal diffusion leads to a lowering Of stabil- 
ity with respect to wave perturbations. The CriticalGrashof numberdiminisheswithincreasing p. 
Depending onp and P, the wave instability mode is either of the thermal, concentration, or 
mixed nature. 
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Fig.2 Fig.3 Fig.4 

In the case of gas mixtures P-P, - 1. For these values of parameters the temperature, 
as well as the concentration wave instability modes are absent. In the diagram of G,(E) cor- 
responding to Fig.1 only curves 1 and 4 remain with the limit of hydrodynamic type instability 
(curve 1) depending weakly on P and Pd, as previously indicated, while the limit of thermal 
concentration long-wave type instability (curve 4) defined by formula (2.5) are entirely in- 
dependent of P- Thus the region of regular and moderately anomalous thermal diffusion, the 
instability of gas mixture is always due the effect of the hydrodynamic mechanism, while in 
the region of considerable anomaly of thermal diffusion (E< -I/*), the most dangerous is the 
thermal concentration mechanism. 

So far, only the stability with respect to plane perturbations was considered here. In- 
vestigation of three-dimensional regular perturbations of the form erpli (~IY$_ k)l reduces to 
the spectral problem for respective amplitudes. It can be shown that the problem can always 
be reduced by some transformations to a similar problem for plane perturbations. The critical 
Grashof number G in the case of three-dimensional perturbations with wavenumbers k, and k, 
is then expressed in terms of the critical number G' for plane perturbations with wavenumber 
k’ = (k,* + h,2)“z using formula G = G'/% in which a = kJ(k,'-t k,?"' is the parameter of three-dimens- 
ional perturbations varying within the limits u6 a6 1. Thus G3,G' which shows that themost 
dangerous are plane perturbations (an analog of Squire's theorem). 

The authors are only aware of paper /5/ in which stability of a mixture convective flow 
was investigated with allowance for the thermal diffusion effect. The flow considered there 
had a longitudinal concentration gradient, and its stability limit was established only with 
respect to perturbations of the hydrodynamic type. 
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